Calculus III Advanced (Course) (14.05) (Homework)
Contents
Section 14.5 Homework
From Calculus 10e by Larson and Edwards, p. 1007. Exercises 5, 7
Exercise 14.5.5 Finding Surface Area
Find the area for the surface given by \(z=f(x,y)\) over the region \(R\).
- \(f(x,y)=9-x^{2}\)
\(R\): square with vertices (0,0), (2,0), (0,2), (2,2).
Solution Since \(f_{x}(x,y)=-2x\) and \(f_{y}(x,y)=0\), the area is
$$S $$ | $$= \int_{R} \int \sqrt{ 1 + [f_{x}(x_{i},y_{i})]^{2} + [f_{y}(x_{i},y_{i})]^{2} } \: d A$$ |
$$= \int_{R} \int \sqrt{ 1+ 4x^{2}} \:d A.$$ |
The bounds for \(R\) are \(0 \leqslant x \leqslant 2\) and \( 0 \leqslant y \leqslant 2\). The integral becomes
$$ S$$ | $$= \int_{0}^{2} \int_{0}^{2} \sqrt{1+4x^{2}} \:dy \: dx$$ |
$$= \left. \int_{0}^{2} y\sqrt{1+4x^{2}}\right]_{0}^{2} \: dx $$ | |
$$= 2\int_{0}^{2} \sqrt{1+4x^{2}} \: dx$$ | |
let \(u=2x\) and \(a = 1\) | |
$$= 2 \left[ \frac{1}{2} \left( 2x \sqrt{1+(2x)^{2}} + \ln \left(2x + \sqrt{1+(2x)^{2}} \right) \right) \right]_{0}^{2}$$ | |
$$= 2 \left[ \frac{1}{2} \left( 4 \sqrt{17} + \ln \left(4 + \sqrt{17} \right) \right) \right]$$ | |
$$= 4 \sqrt{17} + \ln (4 + \sqrt{17})$$ |
Exercise 14.5.7 Finding Surface Area
Find the area for the surface given by \(z=f(x,y)\) over the region \(R\).
- \(f(x,y)= 3 +x^{3/2}\)
- \(R\) rectangle with vertices (0,0), (0,4), (3,4), (3,0).
Solution Since \(f_{x}(x,y)=\frac{3}{2}x^{1/2}\) and \(f_{x}(x,y)=0\), the area is
$$S $$ | $$= \int_{R} \int \sqrt{ 1 + [f_{x}(x_{i},y_{i})]^{2} + [f_{y}(x_{i},y_{i})]^{2} } \: d A$$ |
$$= \int_{R} \int \sqrt{ 1+ \left( \frac{3}{2}x^{1/2} \right)^{2}} \:d A.$$ |
The bounds for \(R\) are \(0 \leqslant x \leqslant 4\) and \( 0 \leqslant y \leqslant 3\). The integral becomes
$$ S$$ | $$= \int_{0}^{4} \int_{0}^{3} \sqrt{1+\frac{9}{4}x} \:dy \: dx$$ |
$$= \left. \int_{0}^{4} y\sqrt{1+\frac{9}{4}x} \right]_{0}^{3} \: dx $$ | |
$$= 3 \int_{0}^{4} \sqrt{1+\frac{9}{4}x} \: dx $$ | |
Let \(u=\frac{3}{2}\sqrt{x}\) and \(a=1\). | |
$$= 3 \left[ \frac{1}{2} \left(\frac{3}{2}\sqrt{x}\sqrt{1+\frac{9}{4}x} + \ln\left( \frac{3}{2}\sqrt{x} + \sqrt{1+\frac{9}{4}x}\right) \right) \right]_{0}^{4} $$ | |
$$= 3 \left[ \frac{1}{2} \left(\frac{3}{2}(2)\sqrt{1+\frac{9}{4}(4)} + \ln\left( \frac{3}{2}(2) + \sqrt{1+\frac{9}{4}(4)}\right) \right) \right] $$ | |
$$= 3 \left[ \frac{1}{2} \left( 3\sqrt{10} + \ln\left( 3 + \sqrt{10}\right) \right) \right] $$ | |
$$= \frac{3}{2} \left( 3\sqrt{10} + \ln\left( 3 + \sqrt{10}\right) \right) $$ |
Internal Links
Parent Article: Calculus III Advanced (Course)